Quasi-einstein Metrics on Hypersurface Families

نویسنده

  • STUART JAMES HALL
چکیده

We construct quasi-Einstein metrics on some hypersurface families. The hypersurfaces are circle bundles over the product of Fano, Kähler-Einstein manifolds. The quasi-Einstein metrics are related to various gradient Kähler-Ricci solitons constructed by Dancer and Wang and some Hermitian, non-Kähler, Einstein metrics constructed by Wang and Wang on the same manifolds.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On quasi-Einstein Finsler spaces‎

‎The notion of quasi-Einstein metric in physics is equivalent to the notion of Ricci soliton in Riemannian spaces‎. ‎Quasi-Einstein metrics serve also as solution to the Ricci flow equation‎. ‎Here‎, ‎the Riemannian metric is replaced by a Hessian matrix derived from a Finsler structure and a quasi-Einstein Finsler metric is defined‎. ‎In compact case‎, ‎it is proved that the quasi-Einstein met...

متن کامل

Totally umbilical radical transversal lightlike hypersurfaces of Kähler-Norden manifolds of constant totally real sectional curvatures

In this paper we study curvature properties of semi - symmetric type of totally umbilical radical transversal lightlike hypersurfaces $(M,g)$ and $(M,widetilde g)$ of a K"ahler-Norden manifold $(overline M,overline J,overline g,overline { widetilde g})$ of constant totally real sectional curvatures $overline nu$ and $overline {widetilde nu}$ ($g$ and $widetilde g$ are the induced metrics on $M$...

متن کامل

Warped product and quasi-Einstein metrics

Warped products provide a rich class of physically significant geometric objects. Warped product construction is an important method to produce a new metric with a base manifold and a fibre. We construct compact base manifolds with a positive scalar curvature which do not admit any non-trivial quasi-Einstein warped product, and non compact complete base manifolds which do not admit any non-triv...

متن کامل

Obstructions to the Existence of Sasaki–Einstein Metrics

We describe two simple obstructions to the existence of Ricci–flat Kähler cone metrics on isolated Gorenstein singularities or, equivalently, to the existence of Sasaki–Einstein metrics on the links of these singularities. In particular, this also leads to new obstructions for Kähler–Einstein metrics on Fano orbifolds. We present several families of hypersurface singularities that are obstructe...

متن کامل

Perelman's Entropy for Some Families of Canonical Metrics

We numerically calculate Perelman’s entropy for a variety of canonical metrics on CP-bundles over products of Fano Kähler-Einstein manifolds. The metrics investigated are Einstein metrics, Kähler-Ricci solitons and quasi-Einstein metrics. The calculation of the entropy allows a rough picture of how the Ricci flow behaves on each of the manifolds in question.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015